Pixel-Level Recognition of Pavement Distresses Based on U-Net

نویسندگان

چکیده

This study develops and tests an automatic pixel-level image recognition model to reduce the amount of manual labor required collect data for road maintenance. Firstly, images six kinds pavement distresses, namely, transverse cracks, longitudinal alligator block potholes, patches, are collected from four asphalt highways in three provinces China build a labeled dataset containing 10,097 images. Secondly, U-net model, one most advanced deep neural networks segmentation, is combined with ResNet network as basic classification recognize distressed areas Data augmentation, batch normalization, momentum, transfer learning, discriminative learning rates used train model. Thirdly, trained models validated on test dataset, results experiments show following: if types distresses not distinguished, pixel accuracy (PA) values using ResNet-34 ResNet-50 97.336% 95.772%, respectively, validation set. When PA two 66.103% 44.953%, respectively. For ResNet-34, category (CPA) intersection over union (IoU) identification no distress 99.276% 99.059%, featuring images, CPA IoU highest at 82.774% 73.778%, lowest 14.077% 12.581%,

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface Distresses Detection of Pavement Based on Digital Image Processing

Pavement crack is the main form of early diseases of pavement. The use of digital photography to record pavement images and subsequent crack detection and classification has undergone continuous improvements over the past decade. Digital image processing has been applied to detect the pavement crack for its advantages of large amount of information and auto detection. The application of digital...

متن کامل

Finger-Vein Recognition Based on Fusion of Pixel Level Feature and Super-Pixel Level Feature

Finger-vein is a promising biometric technique for the identity authentication. However, the finger displacement or the illumination variation in image capturing may cause bad recognition performance. To overcome these limitations, multi-biometric system, an effective method to improve the performance, is proposed. In this paper, a new multimodal biometric system based on pixel level feature an...

متن کامل

Technology Overview on Validating 3D Transverse Profile Data and Measurement of Pavement Surface Distresses

With the advancement of 3D line laser imaging technology (“3D technology”, hereafter for the sake of brevity), high-resolution 3D transverse profile data (“3D data”, hereafter for the sake of brevity), has gained widespread interest from researchers, industry and highway agencies and has been used for collecting pavement surface distresses. However, the study of data characteristics, e.g. data ...

متن کامل

An Improved Neural Segmentation Method Based on U-NET

摘要:局部麻醉技术作为现代社会最为常见的麻醉技 术,具有安全性高,副作用小等优势。通过分析超声 图像,分割图像中的神经区域,有助于提升局部麻醉 手术的成功率。卷积神经网络作为目前最为高效的图 像处理方法之一,具有准确性高,预处理少等优势。 通过卷积神经网络来对超声图像中的神经区域进行分 割,速度更快,准确性更高。目前已有的图像分割网 络结构主要有U-NET[1],SegNet[2]。U-NET网络训练 时间短,训练参数较少,但深度略有不足。SegNet 网 络层次较深,训练时间过长,但对训练样本需求较多 由于医学样本数量有限,会对模型训练产生一定影响。 本文我们将采用一种改进后的 U-NET 网络结构来对超 声图像中的神经区域进行分割,改进后的 U-NET 网络 结构加入的残差网络(residual network)[3],并对每一层 结果进行规范化(batch normalizat...

متن کامل

study of hash functions based on chaotic maps

توابع درهم نقش بسیار مهم در سیستم های رمزنگاری و پروتکل های امنیتی دارند. در سیستم های رمزنگاری برای دستیابی به احراز درستی و اصالت داده دو روش مورد استفاده قرار می گیرند که عبارتند از توابع رمزنگاری کلیددار و توابع درهم ساز. توابع درهم ساز، توابعی هستند که هر متن با طول دلخواه را به دنباله ای با طول ثابت تبدیل می کنند. از جمله پرکاربردترین و معروف ترین توابع درهم می توان توابع درهم ساز md4, md...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Materials Science and Engineering

سال: 2021

ISSN: ['1687-8434', '1687-8442']

DOI: https://doi.org/10.1155/2021/5586615